Magisk/native/jni/init/init.hpp
topjohnwu 49f259065d Introduce new sepolicy injection mechanism
In the current implementation, Magisk will either have to recreate
all early mount implementation (for legacy SAR and rootfs devices) or
delegate early mount to first stage init (for 2SI devices) to access
required partitions for loading sepolicy. It then has to recreate the
split sepolicy loading implementation in-house, apply patches, then
dump the compiled + patched policies into monolithic format somewhere.
Finally, it patches the original init to force it to load the sepolicy
file we just created.

With the increasing complexity involved in early mount and split
sepolicy (there is even APEX module involved in the future!),
it is about time to rethink Magisk's sepolicy strategy as rebuilding
init's functionality is not scalable and easy to maintain.

In this commit, instead of building sepolicy ourselves, we mock
selinuxfs with FIFO files connected to a pre-init daemon, waiting
for the actual init process to directly write the sepolicy file into
MagiskInit. We then patch the file and load it into the kernel. Some
FIFO tricks has to be used to hijack the original init process's
control flow and prevent race conditions, details are directly in the
comments in code.

At the moment, only system-as-root (read-only root) support is added.
Support for legacy rootfs devices will come with a follow up commit.
2022-03-16 00:31:55 -07:00

181 lines
4.0 KiB
C++

#include <utils.hpp>
using kv_pairs = std::vector<std::pair<std::string, std::string>>;
// For API 28 AVD, it uses legacy SAR setup that requires
// special hacks in magiskinit to work properly. We do not
// necessarily want this enabled in production builds.
#define ENABLE_AVD_HACK 1
struct BootConfig {
bool skip_initramfs;
bool force_normal_boot;
bool rootwait;
bool emulator;
char slot[3];
char dt_dir[64];
char fstab_suffix[32];
char hardware[32];
char hardware_plat[32];
void set(const kv_pairs &);
void print();
};
struct fstab_entry {
std::string dev;
std::string mnt_point;
std::string type;
std::string mnt_flags;
std::string fsmgr_flags;
fstab_entry() = default;
fstab_entry(const fstab_entry &) = delete;
fstab_entry(fstab_entry &&) = default;
fstab_entry &operator=(const fstab_entry&) = delete;
fstab_entry &operator=(fstab_entry&&) = default;
};
#define DEFAULT_DT_DIR "/proc/device-tree/firmware/android"
extern std::vector<std::string> mount_list;
bool unxz(int fd, const uint8_t *buf, size_t size);
void load_kernel_info(BootConfig *config);
bool check_two_stage();
void setup_klog();
const char *backup_init();
/***************
* Base classes
***************/
class BaseInit {
protected:
BootConfig *config = nullptr;
char **argv = nullptr;
[[noreturn]] void exec_init();
public:
BaseInit(char *argv[], BootConfig *config = nullptr) : config(config), argv(argv) {}
virtual ~BaseInit() = default;
virtual void start() = 0;
};
class MagiskInit : public BaseInit {
protected:
mmap_data self;
mmap_data magisk_cfg;
std::string custom_rules_dir;
#if ENABLE_AVD_HACK
// When this boolean is set, this means we are currently
// running magiskinit on legacy SAR AVD emulator
bool avd_hack = false;
#else
// Make it constexpr so compiler can optimize hacks out of the code
static constexpr bool avd_hack = false;
#endif
bool patch_sepolicy(const char *file);
void hijack_sepolicy();
void setup_tmp(const char *path);
void mount_rules_dir(const char *dev_base, const char *mnt_base);
void patch_rw_root();
public:
using BaseInit::BaseInit;
};
class SARBase : public MagiskInit {
protected:
std::vector<raw_file> overlays;
void backup_files();
void patch_ro_root();
public:
using MagiskInit::MagiskInit;
};
/***************
* 2 Stage Init
***************/
class FirstStageInit : public BaseInit {
private:
void prepare();
public:
FirstStageInit(char *argv[], BootConfig *config) : BaseInit(argv, config) {
LOGD("%s\n", __FUNCTION__);
};
void start() override {
prepare();
exec_init();
}
};
class SecondStageInit : public SARBase {
private:
bool prepare();
public:
SecondStageInit(char *argv[]) : SARBase(argv) {
setup_klog();
LOGD("%s\n", __FUNCTION__);
};
void start() override {
if (prepare())
patch_rw_root();
else
patch_ro_root();
exec_init();
}
};
/*************
* Legacy SAR
*************/
class LegacySARInit : public SARBase {
private:
bool mount_system_root();
void first_stage_prep();
public:
LegacySARInit(char *argv[], BootConfig *config) : SARBase(argv, config) {
LOGD("%s\n", __FUNCTION__);
};
void start() override {
if (mount_system_root())
first_stage_prep();
else
patch_ro_root();
exec_init();
}
};
/************
* Initramfs
************/
class RootFSInit : public MagiskInit {
private:
void early_mount();
public:
RootFSInit(char *argv[], BootConfig *config) : MagiskInit(argv, config) {
LOGD("%s\n", __FUNCTION__);
}
void start() override {
early_mount();
patch_rw_root();
exec_init();
}
};
class MagiskProxy : public MagiskInit {
public:
explicit MagiskProxy(char *argv[]) : MagiskInit(argv) {
setup_klog();
LOGD("%s\n", __FUNCTION__);
}
void start() override;
};